
1

Proceedings of DETC'02
ASME 2002 Design Engineering Technical Conferences

and Computers and Information in Engineering Conference
Montreal, Canada, September 29 - October 2, 2002

DETC2002/CIE-34463

ARCHITECTURE AND IMPLEMENTATION OF A DESIGN REPOSITORY SYSTEM

Simon Szykman
Manufacturing Systems Integration Division
National Institute of Standards and Technology

100 Bureau Dr., Stop 8263
Gaithersburg, MD 20899-8263

szykman@nist.gov

Keywords: design repositories, information modeling, knowledge representation, product development

ABSTRACT
This paper describes the design and development of a de-

sign repository software system. This system is a prototype
implementation intended to demonstrate the role of design re-
positories as part of a vision for the next generation of product
development software systems. This research involves not
only the creation of a prototype software system, but is part of
a broader effort that also includes the development of a core
product knowledge representation, and that seeks to address
terminological and semantic issues associated with computer-
aided product development. This paper focuses on the inter-
faces that have been developed to support authoring and navi-
gation of the product models stored in design repositories, as
well as the software architecture and associated rationale that
provide the framework on which the system is built.

1 INTRODUCTION
The CAD/CAM/CAE (computer-aided design/manufac-

turing/engineering) software industry is ultimately a customer-
driven one. It is therefore expected that as needs mount, a new
generation of tools will emerge to address these needs. As the
complexity of products increases and product development
becomes more distributed, newly emerging software tools will
begin to cover a broader spectrum of product development ac-
tivities than do the traditional mechanical CAD systems. Ac-
cordingly, the ability to effectively and formally capture addi-
tional types of information will become a critical issue.

This research involves the development of a vision of
next-generation product development systems. This work does
not attempt to promote specific tools, but rather seeks to pro-
vide an information modeling infrastructure and implementa-
tion framework after which new systems can be modeled. The

high costs of poor interoperability among today’s computer-
aided design tools are likely to be significantly compounded in
the future if the problem remains unaddressed. This technical
thrust addresses a fundamental problem whose solution can
impact literally billions of dollars of costs to industry. It is
hoped that sufficient diffusion of these concepts into industry
will provide a foundation for improved interoperability among
software tools in the future.

The NIST Design Repository Project involves research
toward providing a technical foundation for the creation of de-
sign repositories—repositories of heterogeneous knowledge
and data that are designed to support the representation, cap-
ture, sharing, and reuse of corporate design knowledge. The
roots of the NIST Design Repository Project involved a small
effort to develop a software prototype to demonstrate the use
of a knowledge representation language created as part of
CONGEN (CONcept GENeration) [1], a system that aimed to
provide partially automated support for engineering design.
An industry workshop held at NIST in November 1996 [2],
which identified a number of industry priorities important to
future knowledge-based design systems, led to the expansion
of the small initial project into a broader research effort.

The infrastructure being developed within the NIST De-
sign Repository Project consists of formal representations for
design artifact knowledge, web-based interfaces for creating
and browsing design repositories, and facilities to allow
searching of repositories using concepts that have engineering
design relevance, such as product function. A variety of re-
search activities have been undertaken within the scope of this
project since its inception. These include:
• Generation of a model of the flow of design information in

product development [3], an effort that examined several

2

product development processes and proceeded to develop a
generic model of the flow of product information independ-
ent of any one design process model.

• Development of a Core Product Model [4, 5], a knowledge
representation that supports a more comprehensive capture
of product information than do traditional CAD systems.
The Core Product Model includes concepts such as explicit
modeling of engineering function and associated flows (e.g.,
energy flows), physical and functional decompositions,
mappings between physical structures and function, and
various other kinds of relationships among these entities.

• Creation of interfaces for authoring, editing, and browsing
design repositories that are easy to use and effective in con-
veying information that is desired.

• Implementation of a web-based software framework to sup-
port distributed access to product knowledge stored in de-
sign repositories.

• Development of taxonomies of standardized terminology to
help provide consistency in, and across, design repositories,
as well as to facilitate indexing, search, and retrieval of in-
formation from them.

This paper focuses on the current Design Repository
System prototype. The general concept behind the Design
Repository System remains largely unchanged between the
previous and current system implementations. However, the
current system embodies fundamental implementational
changes that were made based on insights gained from the
earlier prototype. The most significant of these changes are
(1) a change in the type of client-server architecture used, (2) a
change from CGI (Common Gateway Interface) scripts to
Servlets to provide functionality on the server-side, (3) a cor-
responding change from C++ to Java as the main development
language platform, (4) a change from an object-oriented data-
base management system to a relational database management
system for the back end, and (5) extensive redesigns to the in-
terfaces based on usability testing.

The next section discusses prior work related to this re-
search. Section 3 presents the main Design Repository Sys-
tem interfaces: the Design Repository Browser and the Design
Repository Editor. Section 4 describes the system architecture
and its implementation. Section 5 provides a discussion and
presents areas for future research.

2 RELATED WORK
Traditional CAD systems are limited primarily to repre-

sentation of geometric data and other types of information re-
lating to geometry such as constraints, parametric information,
features, and so on. The engineering design community has
been developing new classes of tools to support knowledge-
based design, product data management (PDM), and concur-
rent engineering. When contrasted with traditional CAD
tools, these new systems are making progress toward the next
generation of engineering design support tools. However,
these systems have been focusing mainly on database-related
issues and do not place an emphasis on information models for
artifact representation (e.g., [6, 7, 8, 9]).

Furthermore, although these systems can represent some
kinds of non-geometric knowledge (e.g., information about
manufacturing process, bills of materials, catalog/supplier
data, etc.), representation of the artifact itself is still generally
limited to geometry. This impacts the utility of a range of
software tools used in engineering industry. As an example,
the lack of a formal product representation that includes func-
tion, behavior and structure has been identified as a short-
coming of existing PDM systems [10].

Because of industry’s increasing dependence on knowl-
edge, rather than simply geometric data, the product modeling
system developed in the NIST Design Repository Project em-
bodies an artifact representation that encompasses a broader
engineering design context. This context includes representa-
tion not only of geometry, but also of function, behavior,
physical and functional decompositions, relationships among
these various entities, and so on.

The artifact modeling representation used in this research
has its roots in earlier work toward developing an object-
oriented representation format that provides a high level divi-
sion into form, function, and behavior [1, 11]. The funda-
mental division of design artifact knowledge into these three
categories is not unique to those systems. This division has its
roots in earlier work in intelligent design system development,
and has been adopted by other researchers in various research
communities. Examples of such work in artificial intelligence
community include the qualitative simulation work in [12],
behavioral and functional representation in [13], functional
representation in [14] and successive representation from pro-
jects such as KRITIK [15] and INTERACTIVE KRITIK [16],
the YMIR project [17], and others. Work done in the design
and engineering community includes CONGEN [1], the
MOSES project [18], the GNOSIS IMS (Intelligent Manufac-
turing System) project [19], Function-Behavior-State Modeler
[20, 21], and a function-behaviour-structure framework [22]
and others.

Although many efforts share the form/function/behavior
view of product models, this project differs from other efforts
in several respects. The representation used in this research
extends beyond these three facets of product knowledge, al-
lowing, for example, the representation of requirements and
links between requirements and related artifacts or functions.
Extensions are being developed to provide links into product
development activities beyond conceptual design, such as as-
sembly modeling and process planning. A second distinction
between the research presented in this paper and previous
work is the development of web-based interfaces to support
distributed access to knowledge. Finally, this project has fo-
cused not only on the issue of representation of knowledge,
but is attempting to address more fundamental issues associ-
ated with terminology, and the semantics that accompanies the
vocabulary used in product development. These issues, which
are often overlooked in the literature, are of critical impor-
tance to developing tools to effectively support product mod-
eling. The terminological aspects of this research are beyond

3

the scope of this paper. They will be described briefly in Sec-
tion 5, and are discussed at greater length in [23].

A variety of technologies and software architectures have
been used to support distributed design and product modeling.
Distributed systems may provide interfaces through web
browsers or stand-alone applications. The most basic
browser-based architectures use HTTP (Hypertext Transfer
Protocol) to handle simple communications between a web
browser and CGI (Common Gateway Interface) scripts on a
web server. This is sometimes referred to as a “stateless” ar-
chitecture because the scripts are only invoked in response to
queries from the client. Since there is no persistence of state
on the server, such an approach is too simplistic to support
typical product modeling activities.

More sophisticated architectures communicate with appli-
cations that run continuously on the server side. For the pur-
pose of distributed product development, these types of archi-
tectures often make use of distributed object protocols such as
Java/Java RMI (Remote Method Invocation) [24, 25] or
CORBA (Common Object Request Broker Architecture) [26,
27, 28]. These protocols may be used for both web browser-
based and stand-alone clients.

For some applications, data is managed in a shared data-
base [29], while in others data is passed between applications
that have their own local databases. Applications may be able
to communicate with one another directly, possibly directly
using TCP/IP (Transmission Control Protocol/Internet Proto-
col) socket connections [30], or alternatively using any of a
variety of protocols including (but not limited to) some of the
other protocols mentioned above. In other cases applications
that are not designed to communicate or interoperate may use
wrappers or agents [31, 32] to handle communications. Fur-
thermore, these various ingredients should not be considered
to be mutually exclusive, as they can often be combined in dif-
ferent ways. For example, a CORBA-based implementation
may or may not make use of Java as a programming language,
while a Java-based implementation may choose to use
CORBA instead of Java/RMI as a distributed object protocol.
Similarly, an agent-based system can be built upon any of a
number of infrastructures, including one based on Java/RMI
[25] or CORBA.

Still another option for developing product development
systems is to build a system using an existing commercial in-
frastructure. One example of such a tool built using Wind-
chill,1 Parametric Technologies Corporation’s collaboration
technology architecture, is presented in [33]. Several other
companies are also providing commercial infrastructures for
collaborative commerce, including EDS (which now incorpo-
rates Unigraphics Solutions and SDRC), MatrixOne, ENOVIA
Corporation (a subsidiary of Dassault Systemes that has
formed an alliance with IBM), CoCreate, and others.

1 Use of any commercial product or company names in this paper is in-

tended to provide readers with information regarding the implementation of
the research described, and does not imply recommendation or endorsement
by the author or the National Institute of Standards and Technology.

This discussion is not meant to provide a complete list of
all potential technological decisions or solutions involved with
designing a product modeling system. The literature review is
representative rather than comprehensive. The intent is to
convey the fact that many alternatives are available for devel-
oping systems. No one approach will be best in all situations.
Thus, a sufficient depth of technical understanding of the vari-
ous alternatives is necessary in order to have system require-
ments, rather than arbitrary decisions, drive the system devel-
opment process.

3 DESIGN REPOSITORY SYSTEM INTERFACES

3.1 Overview of Interface Functionality
The various web-based user interfaces serve as links be-

tween the user remainder of the Design Repository System.
These interfaces accept requests from the user, and deliver the
results of the request via dynamically generated web pages.
Web pages include content in HTML (Hypertext Markup
Language), and in most cases, JavaScript as well. The use of
JavaScript allows some processing of page content to be done
on the client side. For instance, the dynamically expandable
and collapsible hierarchical product decomposition (illustrated
in Section 4) is accomplished using JavaScript.

The Design Repository Browser provides an interface that
allows a user to navigate through the body of product knowl-
edge contained in a design repository. The user can navigate
through this information along a variety of paths. The user
can move up and down the physical hierarchical product de-
composition to reach a design repository object2 of interest.
The user can also move from one design repository object to
another along links between the objects. For example, when
viewing a given artifact (an object that represents a system, an
assembly, a component, etc.), the user can move “down” in
the hierarchy to one of its constituent parts, or “up” in the hi-
erarchy to a higher-level artifact which has the current artifact
as one of its parts. The user can also move along links that do
not correspond to the physical hierarchy. For instance, the
user can move from an artifact object to an object representing
its function, or to other objects representing energy flows of
which the current artifact is a source or destination.

The Design Repository Editor allows the user to create
product models by authoring new design repository informa-
tion, as well as modifying existing information in a repository.
When viewing a product model from the browser interface, a
user that has the appropriate privileges can click on an edit
button to enter the editing mode. In edit mode, the user can
modify information on the current page. While in this mode,
the user also has the ability to create new data entities (i.e.,
new artifacts, functions, flows, etc.), or to add, change, or re-

2 Although the Design Repository System is implemented using Oracle

7, a relational database, the core product model used for representing product
knowledge is conceptually an object-oriented model. Thus, although infor-
mation is physically stored in tables in a relational database, the term “design
repository object” (or simply “object”) will be used to refer to the data entities
that are used to represent a product.

4

move links between entities. Clicking on a button to return to
browsing mode allows the user to confirm changes and com-
mit them to the database. The next section provides a more
detailed description of the specifications and implementation
for the Design Repository Browser and Editor interfaces.

3.2 Interface Design and Implementation
The Design Repository Browser and Editor interfaces

have a frame-based structure where each of several different
frames is used to display certain kinds of information. A
schematic of this frame-based structure is shown in Figure 1.

The overall layout for the frame set shown in Figure 1 is
contained in a static HTML file that specifies the geometry for
the various frames. This file also specifies which additional
files supply the content for each of the frames in the frame set.
Below are descriptions for each of the frames that appear in
Figure 1.
• Top Frame: This static frame displays the Design Reposi-

tory Project banner.
User Frame: Displays a welcome message including the
name of a user when a user is logged in. The User Frame
also contains a link to the search tool and the login/logout
page.

• History Frame: Displays the list of the objects viewed by the
user in the current session and allows quick access to these
objects.

• Tree Menu Frame: This frame displays the hierarchical de-
composition tree for artifacts (by default) or functions (if
selected) for products in the design repository database.
The dynamically expandable and contractable hierarchical
product structure tree makes use of a third-party script
called FolderTree, which is written in JavaScript, and makes
use of Dynamic HTML (DHTML) capabilities supported in
recent versions of most web browsers. FolderTree is freely

Figure 1. Frame-based structure of the Design Repository
Browser and Editor interfaces

available at <http://www.geocities.com/Paris/LeftBank
/2178/foldertree.html> .

• Tree Control Frame: Displays controls for the Tree Menu
Frame, such as switching between an artifact tree and a
function tree or rebuilding these trees.

• Main Frame: The main frame is empty in its initial state.
Different JavaServer Pages are used to display content about
various objects in a design repository as the user interacts
with the system. Editing of objects and authoring of new
objects is also done in the Main Frame.

• Control Frame: Contains controls that affect the content of
the Main Frame, such as switching between browser and
editor mode, or selection of new objects to create in edit
mode.

Figure 2 shows the welcome page of the Design Reposi-
tory System interface. The figure shows the various frames
and their default content when a user makes an initial access to
the system. At this stage, the user has not yet logged in. The
user can click on the login link in the User Frame to access a
login screen and log in with a user name and password.

Without logging in, a user can view the hierarchical prod-
uct decomposition tree in the Tree Menu Frame, or can per-
form a search using the Search Tool. However, a user who is
not logged in does not have read privileges to view any addi-
tional information. Any attempt to view details of the objects
that appear in the Tree Menu Frame, or objects resulting from
searches, will automatically bring the user to a login screen
requiring a login before information may be displayed. The
“edit” button in the control frame is used to switch to editor
mode, but as with viewing of object details, a user who is not
logged in will be presented with a login screen before being
able to use the editor.

Figure 3 shows a screenshot of the Design Repository
Browser interface when the user is viewing an artifact. The
hierarchical product decomposition tree (shown partially ex-
panded in the Tree Menu Frame at the left) allows a user to
expand and view in detail one or more portions of a physical
hierarchy, while leaving the rest of the tree collapsed to hide
product structure detail that is not currently of interest to the
user.
When a design repository object is viewed, all of the informa-
tion that is related to that particular object is retrieved from the
database and sent to the web browser on the client side. Since
users typically view an object with an interest in only a subset
of this information, the complete object description is gener-
ally more than a user wishes to see at once. Nevertheless, re-
trieving all of the information at once provides a significant
advantage in terms of responsiveness of the interface. Al-
though the time required to retrieve the complete object de-
scription is slightly longer than the time it would take to re-
trieve only the subset of information that a user is interested
in, this difference is relatively small. Once the information is
on the client side, the user can selectively view different sub-
sets of information without the server having to process any
new requests from the client. This approach thereby elimi-
nates even brief delays that would be needed for additional

5

Figure 2. Screenshot of the welcome page

client requests to be processed, information retrieved from the
database, and sent back to the client.

To avoid overwhelming a user with an excess of detail,
the Design Repository Browser initially displays only a subset
of the information that is related to a given design repository
object. The detailed information has been sent from the re-
pository to the web browser on the client side, but the infor-
mation is hidden using an expandable/collapsible display
structure implemented using Dynamic HTML. In the interface,
black triangles serve as visual cues to show where information
can be expanded (when the triangle is pointing to the right) to
show more detail, or collapsed (when the triangle is pointing
down) to hide detail. In Figure 3, the first two triangles indi-
cate that additional information about the current object and its
functions is available. The third triangle is pointing down, in-
dicating that the user has already expanded the view to show
additional information about the form of this artifact.

Clicking the “edit” button in the Control Frame switches
the interface from Browser mode to Editor mode. A screen-

shot of the interface in Editor mode is shown in Figure 4. This
mode displays much of the same information that the user can
view in Browser mode, but changes the interface to a form,
allowing the user to edit information that previously could
only be viewed.

In addition to editing textual information, in Editor mode
the user can also edit links between design repository objects.
For instance, the user can assign an existing function object to
an artifact, or identify a set of existing artifact objects as being
sub-artifacts of the current artifact. This is done by selecting
the type of design repository object to be linked to the cur-
rent object. In editor mode, the user may also choose to create
a new design repository object by selecting an object type
from the pull-down list in the Control Frame and clicking the
“Go” button. Figure 5 shows a screenshot of the Design Re-
pository Editor during the process of creating a new artifact
object. Once the user is done editing, clicking the “browse”
button allows the user to confirm changes, commits them to
the database, and returns to Browser mode.

6

Figure 3. Screenshot of the interface in browser mode

4 SYSTEM ARCHITECTURE DESIGN
On the server side, the Design Repository System makes

use of Sun Microsystems’ Java Web Server 2.0, Oracle 7 rela-
tional database management system, Java 1.2 with Java Serv-
let API (Application Programming Interface) and JDBC3 (Java
Database Connectivity) API, a web browser (Netscape Navi-
gator/Communicator 4.0 or later, or Internet Explorer 4.0 or
later) with JavaScript enabled. On the client side, only the
web browser with JavaScript enabled is necessary.

3 Although the current implementation uses Oracle 7 as the database

back end, because interactions with the database are accomplished using
JDBC, a standardized Java-based SQL API, it should be possible to substitute
any SQL-compliant relational database management system as the back end.
It should be noted that not all relational database management systems support
the triggers and sequences used for database consistency maintenance in the
current Design Repository System implementation. Thus, while a substitution
of the database back end should not impact the ability to store and retrieve in-
formation from the database, in some cases a change of back end may require
that certain consistency constraints either be sacrificed, or implemented in
software instead of maintained through the database itself.

4.1 Overview of Functional Components
The main functional components of the Design Reposi-

tory System architecture are the Request Handler, the Data-
base Exchange Manager, the Database Connection Manager,
the Database Management System, the User Interfaces, the
User Management System, and the Web Server. An overview
of these components follows.

Request Handler: The Request Handler handles the vari-
ous requests from the user. This component is the starting
point for processing any kind of request from the user.

Database Exchange Manager: The Database Exchange
Manager is the interface between the web server and the data-
base server, and handles the exchange of data between the two
servers. This component uses an object model to store data in
memory when retrieving information from the database. The
Database Exchange Manager is used by the Request Handler
to retrieve data to satisfy user requests.

Database Connection Manager: The process of spawning
a new connection to the database is time consuming enough to
cause perceptible delays in the responses to user requests. The

7

Figure 4. Screenshot of the interface in editor mode

Database Connection Manager is used to dynamically main-
tain a pool of open connections to the database, so that user
requests can be handled without having to open new connec-
tions in response to these requests. When a request gets
passed to the Database Exchange Manager from the Request
Handler, the Database Exchange Manager requests an (already
open) connection from the Database Connection Manager.

Database Management System: The database used for the
Design Repository System is Oracle 7, a relational database
management system (DBMS). Because the underlying repre-
sentation used for modeling product knowledge is conceptu-
ally an object-oriented representation (see [4, 5]), one might
argue that an object-oriented database would be better suited
to this application. In general, the choice of a DBMS may be
driven by numerous factors in addition to the obvious issue of
the nature of the information being modeled. In the case of
this project, several other important drivers led to the choice of
a relational database system for the back-end database.

One factor is the fact that standardized Java-based APIs
exist for creating generic (non-vendor-specific) interfaces to
SQL (Structured Query Language) compliant relational data-

bases, whereas no such APIs yet exist for object-oriented data-
bases. Because databases from many different vendors are
used by companies in industry, it was considered important for
this project to not be tied to any one particular vendor’s data-
base management system, to show relevance to as large a
cross section of industry as possible. The heterogeneity of
database systems outside of NIST also could potentially serve
as a barrier to collaboration with other groups within the scope
of this project. The ability to construct generic interfaces that
could communicate with databases from different vendors
would make external collaborations easier.

Lastly, if the Design Repository System were developed
using an object-oriented database, there might be a perception
that this type of DBMS is a requirement for implementing
such a system in industry. Because relational databases are
much more prevalent in industry than in object-oriented data-
bases, such a perception might inhibit diffusion of this tech-
nology into industry. The choice of a relational database sys-
tem for the back end demonstrates that implementations do not
require object-oriented databases, and are possible with rela-
tional databases as well.

8

Current status in the process of creating a new repository object

HTML forms to get data about the new objectFigure 5. Screenshot of the interface in author mode

User Interfaces: The designer makes use of various user
interfaces to interact with the Design Repository System. The
Design Repository interfaces serve as the end user’s access
point to product information that is stored in design reposito-
ries, enabling the end user to author, edit, retrieve and view
this information. Information supplied by the user is proc-
essed and stored in the database. Information retrieved by the
user is formatted using HTML and JavaScript, to provide a
client-side presentation of information that is readily interpret-
able by a human user.

User Management System: The User Management Sys-
tem allows administrators to manage access to product infor-
mation by allowing the creation of groups, the addition and
removal of users from groups, and the granting of permissions
associated with information access. Based on the groups a
user belongs to and the permissions a user has been granted, a
user may be denied access to information, a user may be per-
mitted to only view information (read-only privileges), or a
user can also be allowed to edit information (read/write privi-
leges). Information for each product is stored in a design re-
pository. Each repository belongs to a group, so that each user
can have different permissions (no access, read-only,
read/write) for each repository based on the permissions that
have been granted to that user by the administrators of each
group the user belongs to. Because the implementation of user
management systems is relatively routine and does not press

the state of the art, this aspect of the Design Repository Sys-
tem will not be discussed further in this paper.

Web Server: The Web Server is used to handle communi-
cations between the user at the client side and the main part of
the Design Repository System on the server side using HTTP.
The web server used in the current implementation is Sun Mi-
crosystems’ Java Web Server 2.0.

The interaction between the various functional compo-
nents is shown in Figure 6. Regardless of the activities users
involved with (browsing/editing information, searching re-
positories with the search tool, or performing user manage-
ment activities), users interface with the Design Repository
System using a web browser as a client. Thus, although these
activities are functionally different and are implemented as
different components, the interfaces that users interact with to
accomplish these activities are not individually shown in Fig-
ure 6. The interface output logic box as it is shown in Figure 6
is not, strictly speaking, a single separate component, but
rather is used to illustrate the fact that information is formatted
(using HTML and JavaScript) for web-based viewing before
being sent to the user.

Section 4.2 provides additional information regarding the
design of the client/server architecture. Sections 4.3 - 4.5 de-
scribe the Request Handler, the Database Exchange Manager
and the Database Connection Manager in greater detail. Be-
cause the DBMS and the web server used for the NIST Design

9

Request for
connection
to database

Request
Handler

User
Management

System

Database
Connection
Manager

Database
Exchange
Manager

Interface
Output
Logic

Database
(Oracle 7)

Java Servlet Java Classes

JDBC

JSP Files Java Classes

User information

Request for
connection
to database

DataData

Forwarded
request

Data
input/output

request

Identity/permissions
information

Data input/output
requests

Login/logout requests

User/group/permissions
management requests

Responses
to client

Requests
from client

Web
server

JDBC

JDBC

Database
connection

Database
connection

Connection
Pool

Figure 6. Interaction between functional components

Repository Project are commercial systems and weren’t de-
veloped as part of the project, this report does not include
technical or implementational descriptions of these systems.
Technical information about Oracle 7 can be found at
http://docs.oracle.com/ . Technical details regarding Sun
Microsystems’ Java Web Server 2.0 can be found at
http://docs.sun.com/ .

4.2 Client/Server Architecture Design
The Design Repository System is based on a three-tier

client/server architecture. Three-tier architectures emerged to
overcome the limitations of two-tier architectures, which in-
clude poor performance with large numbers of users, and lim-
ited flexibility. In a two-tier architecture, one tier is the client
and the other tier is the server-side DBMS. In a three-tier ar-
chitecture, the third tier is an application that sits between the
client and the database server.

There are a variety of ways of implementing this middle
tier, such as transaction processing monitors, message servers,
or web/ application servers. The middle-tier in a three-tier ar-
chitecture can be used to perform such functions as queuing,
application execution, database staging, and others. Three-tier
client/server architectures have been shown to improve per-
formance for groups with a large number of users (even as
high as thousands) and provide greater flexibility than a two-

tier approach. Today, most sophisticated web-based applica-
tions that involve data exchange are based on three-tier cli-
ent/server architecture.

Figure 7 is a simplified view of Figure 6 that illustrates
the three tiers in the Design Repository System architecture. In
the Design Repository System, the client is the web browser
that runs on the user’s computer. The third tier is the Oracle 7
database management system. All of the other components
described in Section 4.1 form the middle tier.

In practice, various components may reside on different
machines. The web server may be on one machine, the rest of
the middle tier application on another, the database server on
yet another, and depending on the size of the databases, the
data itself may be distributed among additional machines.
Standard protocols such as TCP/IP and HTTP exist for han-
dling communications among distributed components, so
dealing with distributed components does not greatly add to
the difficulty of implementation if the application develop-
ment is done using techniques that conform to these standards.

The desire for a three-tier architecture, the need to con-
form to standard protocols, and the intended usage of the ap-
plication motivate a number of architectural choices, including
which type of client-server architecture to use, which devel-
opment language to use, which technologies to incorporate
into the system implementation, etc.

10

Database
(Oracle 7)

Data/Information

Responses
to client

Design Repository System
core business logic

Tier 1 Tier 2 Tier 3

Web-based
communications

Browsing/editing
functions

User
Management

functions

Search
capability

Etc.

Requests
from client

Figure 7. Three-tier architecture for the Design Repository System

Three classes of client/server models are a fat client, a
thin client, and an ultra-thin client. These models differ in
how much of the “business logic” of the application resides on
the client side vs. the server side. Fat clients, which have a
significant portion of the business logic on the client side,
were more common prior to today’s prevalence of web-based
applications. A client can easily be “fat” when the client ap-
plication with the built-in business logic is installed on a local
machine. For web-based applications, web browsers provide a
standardized client and any business logic must be delivered to
that client separately. Fat clients are not commonly used for
web-based applications due to delivery issues, such as band-
width limitations that can lead to impractical download times,
and the frequency with which updates are made to business
logic in a fast-moving software development world.

The difference between a thin and an ultra-thin client is
again the degree to which a portion of the business logic is
handled on the client side. Examples of thin clients might be
applications which require the downloading of plug-ins or
Java Applets, allowing some of the “work,” be it computing,
data processing, etc. to be done on the client machine. Ultra-
thin clients attempt to minimize the processing done on the
client machine. The dividing line between thin clients and ul-
tra-thin clients changes as technology evolves. For example,
the use of JavaScript (a scripting language supported in most
web browsers) in web pages allows web browsers to easily
and quickly perform certain types of functions that in the past
would have required an Applet to be downloaded in order to
accomplish on the client side.

The Design Repository System is implemented using an
ultra-thin client/server model. One of the main motivations for
selecting an ultra-thin client over a thin client was the recog-
nition that many of the intended users of the type of technol-
ogy developed in this project would be small and medium
sized businesses that would not necessarily have the latest (i.e.

powerful) computer hardware available to them. The ultra-
thin client minimizes the burden on the client machine.

The second motivation was a desire to support a broad
base of potential users in a heterogeneous software environ-
ment. For example, one approach to developing a thin (rather
than an ultra-thin) client would have been to create a Java
Applet-based interface that would be downloaded to the client
machine, allowing some of the data processing to be handled
on the client machine. However, the Java language is an
evolving one. Web browser support for Java 2, the latest ver-
sion, may be constrained by one’s choice of web browser, the
version of the web browser being used, as well as the operat-
ing system on the client machine. An Applet-based interface
would therefore not be accessible by as broad a user base as
one which uses only HTML and JavaScript, which is more
uniformly supported by web browsers than Java 2.

Among development languages, C++ and Java are the
most widely used languages. Although earlier versions of the
Design Repository System made extensive use of C++, a deci-
sion was made to shift to Java for the latest implementation.
This decision was made based on the availability of existing
Java-based technologies to support web-based application de-
velopment, including Java Servlets, JavaServer Page, and Jav-
aBeans.

A Java Servlet is a Java program that runs on the server
side, as contrasted with the more familiar Java Applets, which
are Java programs that run on the client side. The advantage
Servlets have over Applets is that they can enable complex
programming, but being on the server side they avoid the
download times that would be needed to download large
Applets to a web browser. An alternate traditional method for
supporting server-side processing is the use of CGI scripts,
which spawn processes of short duration for each data access.
These processes are terminated once a script execution has
completed, and once a process terminates no portion of the

11

computation remains in active memory. In contrast, Servlets
are applications that run continuously, allowing information to
be cached in active memory, significantly reducing the time
expended by making repeated accesses of the database.

Servlets, being implemented in Java, provide a compo-
nent-based, platform-independent method for development of
web-based applications. Servlets are also more portable than
some of the proprietary web server extensions that can be used
for application development (e.g., Netscape Server API), as
they are not limited to use with a single vendor’s web server.

JavaServer Page (JSP) is an open specification developed
by an industry-wide effort led by Sun Microsystems, which
provides a simplified method for rapidly creating web pages
that display dynamically-generated content. The JSP specifi-
cation defines interactions between the web server and JSP
pages, and allows the format and syntax of pages to be de-
fined. JSP pages are compiled into Servlets in order to be
used. It is possible to accomplish with Servlets alone that
which is done with JSP. The advantage to using JSP is that
the JSP separates the form of web pages—the templates that
define how they appear—from their content. In applications
such as the Design Repository System, where web page tem-
plates are static but content is dynamically generated (from a
database in our case), using JSP provides a much-simplified
development approach to generating web pages.

JavaBeans is a platform-independent component model
written in Java. The component model allows developers to
author reusable platform-independent software components
that can be used for building larger applications. Being a
complete component model, JavaBeans provides features such
as properties, events, methods, and persistence. Although the
concept of reusable software components is not new to Java-
Beans, JavaBeans has been developed to enable automated
analysis of components, to simplify customization of compo-
nents, and to provide a foundation for component-based soft-
ware development using Java.

Both Java Servlets and JavaServer Pages allow server-
side programming using the Java language. Based on the roles
that these technologies play in software development, three
alternatives were considered for the overall system architec-
ture approach: (1) using only Java Servlets, (2) using
JavaServer Pages in conjunction with JavaBeans, or (3) using
Java Servlets, JavaServer Pages and JavaBeans.

With the first alternative, the middle tier would consist of
the web server and Java Servlets, which would handle all of
the processing in the middle tier. This processing would in-
clude processing HTTP requests coming from the client via
the web server, exchanging data with the database server, dy-
namic creation of web pages containing HTML and
JavaScript, and sending them to the client via the web server
using HTTP. The advantage of this approach is that it is easy
to implement relative to the other alternatives. However, the
disadvantage is that because the web page generation code is
built into the code for the Java Servlets, subsequent mainte-
nance (e.g. updating of web page templates) can become a
burden.

For the second alternative, the middle tier would consist
of the web server and a set of JavaServer Page-JavaBean pairs.
Each type of object stored in a product repository would be
handled by a separate JavaServer Page. HTTP requests would
go to the appropriate JavaServer Page via the web server, de-
pending on which type of information is being processed. For
instance, a request for product function information would go
to one JavaServer Page while a request for a product form
would go to another. Each JavaServer Page would form the
basis for a web page, and would use an associated JavaBean to
retrieve data from the database, providing the dynamic content
for the web page containing the requested information.

Since JavaServer Pages are compiled into Java Servlets in
order to be used, this architecture is physically nearly identical
to the previous one. The use of JavaServer Pages simplifies
the task of writing the HTML generation code, making im-
plementation easier than with the first alternative. This ap-
proach is not without drawbacks, however. Because the
JavaServer Pages include Java code, this approach is not well
suited to systems that have sophisticated business logic (com-
plex functionality). Too much Java in the JavaServer Pages
can make it very difficult to debug software during develop-
ment, and longer-term maintenance can still be problematic.

The third alternative is to use Java Servlets, JavaServer
Pages, and JavaBeans. With this architecture, Java Servlets
are used to handle incoming requests, processing, and other
business logic. For a given request, an appropriate JavaBean
is instantiated to handle data exchange with the database. In-
formation about the request is passed on to the appropriate
JavaServer Page, which then receives the query results from
the JavaBean and sends them out to the client in the appropri-
ate format.

This approach provides the intended benefits of Java
Servlets, as well as of the JavaServer Pages and JavaBeans
combination. More specifically, this architecture effectively
separates the business logic (the core functionality of the ap-
plication) from the graphical user interface definition (the code
that relates to formats or templates for viewing and displaying
information). Because of this decoupling, these two layers can
be developed almost entirely independently from one another.
More importantly, once deployed, they can be maintained and
updated separately. The business logic can be extended with-
out having to modify the code associated with displaying in-
formation, and similarly, the interface can be revised without
digging into the core application code.

The only disadvantage of this architecture in contrast to
the previous ones is that the implementation itself is more
complex as a result of incorporating all of the technologies
used individually in the previous alternatives. Because of this
increased complexity, a more thorough understanding of the
various technologies is necessary in order to achieve a suc-
cessful implementation. Nevertheless, because of the separa-
tion of layers, such an architecture can be easier (though not
necessarily faster) to implement. More importantly, the bur-
dens associated with extending the system after initial de-

12

ployment, and longer-term system maintenance, are consid-
erably reduced.

The choice of architecture was made with the intent of
producing an application that would be fast, robust, and easy
to extend and maintain. This decision was made with some
insight into what would be required to achieve the system
functionality that was desired. A system with very modest in-
terface requirements might best be implemented using the first
architecture. A system with comparatively simple business
logic might be best implemented with the second alternative.
Such a system would be easier to implement, and could still be
easy to maintain if significantly less core code were needed to
provide the desired application functionality.

Based on the requirements of the Design Repository Sys-
tem, the third alternative was selected for this project. Among
the three architectures considered, all could provide a fast and
robust application but the last alternative would be signifi-
cantly easier to extend and maintain. The interactions among
the various technologies involved is shown in Figure 8. This
generic architecture is essentially a higher-level view of the
more detailed, component-level view of the Design Repository
System architecture that was shown in Figure 6.

4.3 Request Handler
The Request Handler is the entry point to the middle tier

of the three-tier architecture. The Request Handler consists of
a set of Java Servlets that receive HTTP requests from the cli-
ent through the web server, and execute Java code to process
the requests. The Request Handler first verifies that an in-
coming request is a valid one. Assuming it is, it then dis-
patches commands to the Database Exchange Manager and
passes information regarding the request to the code associ-
ated with the user interface definition so that the results of the
query can be constructed, appropriately formatted, and sent

back to the user. Responses to requests and/or confirmation of
transactions are returned to the user as web pages (formatted
in HTML and JavaScript) sent through the web server.

4.4 Database Exchange Manager
The Database Exchange Manager is the interface between the
middle tier and the third tier of the system architecture (see
Figure 6). The Database Exchange Manager sends SQL re-
quests to the database in order to exchange data, using JDBC
a standardized Java-based SQL API mentioned in Section 4.
This data exchange is done via an open connection to the da-
tabase, which the Database Exchange Manager obtains from
the Database Connection Manager (discussed below). When
data are retrieved from the database, these data are kept in
memory using a Java object model that mirrors the Core Prod-
uct Model (discussed in Section 1) that is used in the NIST
Design Repository Project. Once stored in the object model,
these data can be accessed by the other components of the De-
sign Repository System. The Database Exchange Manager is
implemented using JavaBeans.

4.5 Database Connection Manager
The Design Repository System provides interfaces for

creating, retrieving and editing product information stored in a
database. These activities involve the exchange of informa-
tion to or from a database. Many of the actions available to a
user through the interface result in communication with the
database. Establishing a connection to a database is a time
consuming function because the database must allocate re-
sources (such as memory), authenticate the user, set up the
corresponding security context, etc.

Calling the establishment of a connection “time consum-
ing” is, of course, a relative characterization. With the net-
work infrastructure that the Design Repository System runs on,

Database
(Oracle 7)

Data/
Information

Design Repository System
core business logic

Tier 1 Tier 2 Tier 3

JavaServer
Page #n

JavaBean

#nResponses
to client

Requests
from client

JavaBean

#2

JavaServer
Page #2

JavaServer
Page #1

JavaBean

#1

Java
Servlets

Figure 8. Three-tier architecture with Java Servlets, JavaServer Pages and JavaBeans

13

and with the web server and database servers being run on
separate machines, establishing a connection to the database
typically takes one second or longer. As sources on interface
design commonly cite 200 milliseconds as being the threshold
below which response appears to be instantaneous and above
which humans perceive a delay, it is evident that it does not
take much of a delay to create unappealing response lags in a
human-computer interface. Indeed, the previous Design Re-
pository System implementation did suffer from excessive de-
lays in response to user input, and the time for opening connec-
tions to the database server for each query was experimentally
found to be one of the most significant contributors to the time
lag. The Database Connection Manager was developed to ad-
dress this issue.

The Database Connection Manager is designed to imple-
ment a pooling technique that allows multiple database con-
nections to be established and maintained in a connection pool,
so that they can be shared transparently among multiple in-
coming requests. The Database Connection Manager creates
the pool of database connections when the main application of
the Design Repository System is initially started up. Consum-
ing the time required to establish connections at startup signifi-
cantly reduces the overhead on database queries made later in
response to user requests. Once a user request is satisfied, the
connection is released back into the pool without closing it.

The connection pool starts up with a default number of
connections, but is implemented to optimize resource usage by
altering the pool size based on demand. The number of connec-
tions in the connection pool can be dynamically increased as
the number of free connections in the pool drops below some
limit, or reduced when the number of unused connections ex-
ceeds a specified number. When it is necessary to add connec-
tions, establishing new connections takes as much time as it
would without a connection manager in place. However, this
time usage does not delay the system response to user queries
because new connections are added while some unused con-
nections are still available in the connection pool. Thus the
connection management is done invisibly to the user without
causing unwanted response delays.

5 AREAS FOR FUTURE RESEARCH
This paper has described the functionality, interfaces, ar-

chitectural design, and implementation of a Design Repository
System. The work being done as part of this project is intended
to provide a foundation for the development of a new genera-
tion of computer-aided product development tools. Although
this paper focused mainly on technical aspects of the Design
Repository System, the project itself is concerned with contri-
butions at several other levels. These include the development
of more comprehensive representations of product knowledge
than are available in traditional mechanical CAD systems, the
design of interfaces that allow users to navigate complex prod-
uct models and that deliver information in an easily interpreted
format, and efforts to address terminological issues in product
development support tools.

The Design Repository System implementation is continu-
ally being enhanced in order to extend functionality and im-
prove usability issues. The usability feedback is obtained
through modeling activities by members of the development
team, who are also working to enhance the content of the ex-
ample product repositories available in the database.

Ongoing efforts in related projects at NIST are working to
develop extensions to the Core Product Model that provides the
representational foundation for this project. Extensions in pro-
gress include the representation of complex assembly models,
process planning information, and design rationale information.
As these extensions are completed, additional work will be
necessary to extend the modeling capabilities of the Design Re-
pository System accordingly.

The most recent addition to the Design Repository System
tool suite is a search tool, which enables users to perform
searches that can be of use in early stages of product develop-
ment. For example, a user can search the design repository da-
tabase for components not only based on their name (as might
be possible in a typical commercial CAD system), but also
based on their function. Although the search tool is currently
functional, improvements in this preliminary prototype are an-
ticipated to improve both functionality and usability.

ACKNOWLEDGMENTS
The author would like to thank Khanh Trieu and Guilhem

Assant, whose technical reports and implementation documen-
tation provided much of the implementational detail presented
in this paper.

REFERENCES
1. Gorti, S. R., A. Gupta, G. J. Kim, R. D. Sriram and A.

Wong (1998), “An Object-Oriented Representation for
Product and Design Process”, Computer-Aided Design,
Vol. 30, No. 7, pp. 489-501.

2. Szykman, S., R. D. Sriram, and S. J. Smith (Eds.) (1998),
Proceedings of the NIST Design Repository Workshop,
NISTIR 6159, National Institute of Standards and Tech-
nology, Gaithersburg, MD, November, 1996.

3. Shooter, S. B., W. Keirouz, S. Szykman and S. J. Fenves
(2001), “A Model of the Flow of Design Information in
Product Development,” Engineering With Computers, Vol.
16, No. 3-4, pp. 178-194.

4. Szykman, S., S. J. Fenves, S. B. Shooter and W. Keirouz
(2001), “A Foundation for Interoperability in Next-
generation Product Development Systems,” Computer-
Aided Design, Vol. 33, No. 7, pp. 545-559.

5. Fenves, S. J. (2001), A Core Product Model for Repre-
senting Design Information, NISTIR 6736, National Insti-
tute of Standards and Technology, Gaithersburg, MD,
April.

6. Hardwick, M. and D. Loffredo (1995), ”Using EXPRESS
to Implement Concurrent Engineering Databases,” Pro-
ceedings of the 1995 ASME Computers in Engineering
Conference and Engineering Database Symposium, Bos-
ton, MA, September, pp. 1069-1083.

14

7. Kim, T. S., S.-H. Han, and Y. J. Shin (1996), “Product
Data Management Using AP203 of STEP Standard,” Pro-
ceedings of the 1996 ASME Design Engineering Technical
Conferences and Computers in Engineering Conference,
Paper No. 96-DETC/DAC-1069, Irvine, CA, August.

8. Shah, J. J., D. K. Jeon, S. D. Urban, P. Bliznakov, and M.
Rogers (1996), “Database Infrastructure for Supporting
Engineering Design Histories,” Computer-Aided Design,
Vol. 28, No. 5., pp. 347-360.

9. Wood III, W. H. and A. M. Agogino (1996), “Case-Based
Conceptual Design Information Server for Concurrent En-
gineering,” Computer-Aided Design, Vol. 28, No. 5, pp.
361-370.

10. Bilgic, T. and D. Rock (1997), “Product Data Management
Systems: State-of-the-Art and the Future,” Proceedings of
the 1997 ASME Design Engineering Technical Confer-
ences, Paper No. DETC97/EIM-3720, Sacramento, CA,
September.

11. Wong A. and R. D. Sriram (1993), “SHARED: An Infor-
mation Model for Cooperative Product Development,” Re-
search in Engineering Design, Vol. 5, No. 1, pp. 21-39.

12. de Kleer, J. and J. S. Brown (1983, “Assumptions and
Ambiguities in Mechanistic Mental Models,” Mental Mod-
els, D. Gentner and A. L. Stevens (Eds.), Lawrence Erl-
baum Associates, New Jersey, pp. 155-190.

13. Iwasaki Y. and B. Chandrasekaran (1992), “Design Verifi-
cation through Function and Behavior-Oriented Represen-
tations: Bringing the Gap between Function and Behavior,”
Artificial Intelligence in Design ‘92, J.S. Gero (Ed.), Klu-
wer Academic Publishers, Boston, pp. 597-616.

14. Chandrasekaran, B., A. Goel, and Y. Iwasaki (1993),
“Functional Representation as Design Rationale,” IEEE
Computer, January, pp. 48-56.

15. Goel, A., S. Bhatta, and E. Stroulia, (1996), “KRITIK: An
Early Case-Based Design System,” Issues and Applica-
tions of Case-Based Reasoning to Design, M. Maher and P.
Pu (Eds.), Lawrence Erlbaum Associates, New Jersey.

16. Goel, A., A. Gomez, N. Grue, J. W. Murdock, M. Recker,
and T. Govindaraj (1996), “Explanatory Interface in Inter-
active Design Environments,” Artificial Intelligence in De-
sign ‘96, J. S. Gero (Ed.), Kluwer Academic Publishers,
Boston.

17. Alberts L.K. and F. Dikker (1992), “Integrating Standards
and Synthesis Knowledge Using the YMIR Ontology,”
Artificial Intelligence in Design ‘94, J.S. Gero and F. Sud-
weeks (Eds.), Kluwer Academic Publishers, Boston, pp.
517-534.

18. Henson, B., N. Juster and A. de Pennington (1994), “To-
wards an Integrated Representation of Function, Behavior
and Form,” Computer Aided Conceptual Design, Pro-
ceedings of the 1994 Lancaster International Workshop on
Engineering Design, Sharpe J. and V. Oh (eds.), Lancaster
University EDC, Lancaster, pp. 95-111.

19. Ranta, M., M. Mäntylä, Y. Umeda and T. Tomiyama
(1996), “Integration of Functional and Feature-Based

Product Modelling – the IMS/GNOSIS Experience,” Com-
puter-Aided Design, Vol. 28, No. 5, pp. 371-381.

20. Umeda, Y., M. Ishii, M. Yoshioka, Y. Shimomura and T.
Tomiyama (1996), “Supporting Conceptual Design Based
on the Function-Behavior-State Modeler,” Artificial Intel-
ligence for Engineering Design, Analysis and Manufac-
turing. Vol. 10, pp. 275-288.

21. Shimomura, Y., M. Yoshioka, H. Takeda, Y. Umeda and
T. Tomiyama (1998), “Representation of Design Object
Based on the Functional Evolution Process Model,” ASME
Journal of Mechanical Design, Vol. 120, No. 2, pp. 221-
229.

22. Qian L. and J. S. Gero (1996), “Function-Behavior-
Structure Paths and Their Role in Analogy-Based Design,”
Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, Vol. 10, No. 4, pp. 289-312.

23. Szykman, S., J. W. Racz and R. D. Sriram (1999), “The
Representation of Function in Computer-based Design,”
Proceedings of the 1999 ASME Design Engineering Tech-
nical Conferences and Computers in Engineering Confer-
ence, Paper No. DETC99/DTM-8742, Las Vegas, NV,
September.

24. Karne, R. K., S. V. Dandekar, S. Poluri, G. Chen, J. S. Ba-
ras, D. S. Nau, M. O. Ball, E. Lin, V. S. Trichur and J. T.
Williams (1998) "Web-It-Man: A Web-based Integrated
Tool for Manufacturing Environment," Proceedings of the
1998 ASME Design Engineering Technical Conferences
and Computers in Engineering Conference, Paper No.
DETC98/CIE-5524, Atlanta, GA, September.

25. Xiao, A., H.-J. Choi, R. Kulkarni, J. K. Allen, D. Rosen, F.
Mistree and S. C. Feng (2001), “A Web-based Distributed
Product Realization Environment,” Proceedings of the
2001 ASME Design Engineering Technical Conferences
and Computers and Information in Engineering Confer-
ence, Paper No. DETC2001/CIE-21766, Pittsburgh, PA,
September.

26. Pahng, G.-D. F., S. Bae and D. Wallace (1998), “Web-
based Collaborative Design Modeling and Decision Sup-
port,” Proceedings of the 1998 ASME Design Engineering
Technical Conferences and Computers in Engineering
Conference, Paper No. DETC98/EIM-5681, Atlanta, GA,
September.

27. Sistla, R., A. R. Dovi and P. Su (2000), “A Distributed,
Heterogeneous Computing Environment for Multidiscipli-
nary Design and Analysis of Aerospace Vehicles,” Ad-
vances in Engineering Software, Vol. 31, No. 8-9, pp. 707-
716.

28. Jayaram, U., S. Jayaram, Y. Yang and K. Lyons (2000),
“CORBA-based Collaboration in a Virtual Assembly De-
sign Environment,” Proceedings of the 2000 ASME Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference, Paper No.
DETC2000/CIE-14585, Baltimore, MD, September.

29. Liang, J., J. J. Shah, R. D. Souza, S. D. Urban, K. Ayyas-
wamy, E. Harter and T. Bluhm (1999), “Synthesis of Con-
soludated Data Schema for Enineering analysis from Mul-

15

tiple STEP Application Protocols,” Computer-aided De-
sign, Vol. 31, No. 7, pp. 429-447.

30. Zhang, F. and D. Xue (2002), “Distributed Database and
Knowledge Bas Modeling for Concurrent Design,” Com-
puter-Aided Design, Vol. 34, No. 1, pp. 27-40.

31. Rajagopalan, S., J. M. Pinilla, P. Losleben, Q. Tian and S.
K. Gupta (1988), “Integrated Design and Rapid Manufac-
turing over the Internet,” Proceedings of the 1998 ASME
Design Engineering Technical Conferences and Comput-
ers in Engineering Conference, Paper No. DETC98/CIE-
5519, Atlanta, GA, September.

32. Jin, Y., and W. Zhou (1999), “Agent-based Knowledge
Management for Collaborative Engineering,” Proceedings
of the 1999 ASME Design Engineering Technical Confer-
ences and Computers in Engineering Conference, Paper
No. DETC99/EIM-9022, Las Vegas, NV, September.

33. Chadha, B. and J. Welsh (2001), “An Architecture for
Virtual Prototyping of complex Systems,” Proceedings of
the 2001 ASME Design Engineering Technical Confer-
ences and Computers and Information in Engineering
Conference, Paper No. DETC2001/CIE-21239, Pittsburgh,
PA, September.

